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FINDING RELATIONSHIPS 
BETWEEN CLINICAL BATCH 
QUALITY DATA AND PATIENT 
OUTCOMES

Valérie Vermylen, Jean-Etienne Fortier, Eric Rulier, Alain Bernard, Carl Jone, and Justin Neway

U
nderstanding how variability in biopharmaceutical product 
quality, manufacturing, and controls (CMC) affects both 
safety and efficacy is a major goal in pharmaceutical qual-
ity. The increasing number of software packages available 

to manage “big data” has greatly improved the ability to assess the criti-
cality of biopharmaceutical product quality attributes. These advances in 
technology have not gone unnoticed by regulatory agencies, which now 
require greater understanding of critical quality attributes in relation to 
patient safety and drug efficacy.
 Yet industry-wide technical and organizational difficulties frequently 
prevent correlations between CMC data and patient outcomes, produc-
tion processes, and product quality. It’s important to understand why 
this is so:
 Biopharmaceutical companies, partially in response to regulatory 

drivers, generate increasing amounts of data through initiatives 
such as quality by design, process analytical technology, process 
characterization, and continued process verification, along with new 
manufacturing and measurement technologies. 

 Drug developers require better ways of using their process and 
quality data for statistical investigations and analyses, such as 
correlations that can help support patient-focused business 
decisions.

 Even today, in organizations of all sizes, much data is still captured 
manually and stored in spreadsheets. In addition, structured data 
often reside in separate and mutually incompatible databases, 
making aggregation difficult.

Consequently, it has been difficult to gather, organize, and contextualize 
data to improve knowledge of process and production operations, main-
tain and share this knowledge, and ensure appropriate levels of privacy. 
The US Food and Drug Administration (FDA) acknowledges as much in 
its “Process Validation: General Principles and Practices” Guidance for 
Industry: 1

 Focusing exclusively on qualification efforts without also 
understanding the manufacturing process and its variability may 
lead to inadequate assurance of quality. Each manufacturer should 
judge whether it has gained sufficient understanding to provide 
a high degree of assurance in its manufacturing process to justify 
commercial distribution of the product.

The same guidance presents the following list for manufacturers:
 Understand the sources of variation 
 Detect the presence and degree of variation 
 Understand the impact of variation on the process and ultimately on 

product attributes 
 Control the variation in a manner commensurate with the risk it 

represents to the process and product

A report by Shashilov and Neway that explored the link between up-
stream process parameters and downstream product quality outcomes, 
noted the following: 
 [A]n important benefit of being able to easily perform upstream/

downstream correlations in complex manufacturing processes 
is that significant barriers are removed to identifying potential 
cause-and-effect relationships between upstream process conditions 
and downstream process outcomes. Such relationships drive 
the formation of hypotheses that can be confirmed, extended or 
refuted using mechanistic knowledge and/or experimentation. The 
information thus gained about the relationships between upstream 
process parameters and downstream process outcomes is a major 
component of process models used for process control, and also 
contributes in the development of sophisticated process models for 
use in real time adaptive control (RTAC).2

The aim of this study was to leverage the work of Shashilov and Neway, 
to explore the link between product quality (specifically impurity levels) 
resulting from manufacturing process variability, and patient outcomes. 
Specifically, the authors wanted to better understand:
 Whether process parameters driving product quality profile 

outcomes matched the clinical needs
 Whether quality attributes impacted patient responses
 Whether immunogenicity (safety) could be correlated with  

quality attributes
 Whether the levels of product related impurities that were 

administered to patients could be estimated reliably

METHODOLOGY 
This article reports on a retrospective study using historical CMC and 
clinical data sets. We chose this approach because:
 It had a relatively low cost compared to a designed study, as it could 
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use existing data without the expense of changing the clinical study 
design and/or data-gathering requirements.

 It was a pilot, and a proactive approach is needed before the design of 
a clinical study.

CMC data
The data sources used were:
 GMP pilot-scale batches producing drug product used in clinical trials. 

We collected release-testing and some process-execution information 
from paper batch records.

 Process development batches: We collected most of the laboratory 
experiment data from spreadsheets. 

 CMC: Internal and external contract manufacturing organization (CMO) 
data, including:
− General batch data, including raw materials, cell lines, and associated 

quality attributes (critical material attributes)
− Critical process parameters 
− Release data and in-process control (key and critical quality attributes)
− Stability data (e.g., purity)

 Supply chain data to confirm that the drug product was maintained 
within specifications during transport to the clinic
− Temperature excursions during transport 

Clinical trial data
 Lists of kits used in clinical trials (individual kits contained one or more 

syringes to meet a total active ingredient quantity, as required in the 
clinical trial plan); each kit contained drug product from one or two 
production and/or placebo batches 

 Clinical trial plans listing planned and actual individual patient 
treatments and the kits used 

 Patient characteristics (e.g., age, sex, body mass index)
 Treatment type and details (visit dates, doses injected, etc.)
 Adverse events (number and type)
 Individual patient treatment response
 Physiological data (e.g., immunoglobulin G levels)

Clinical teams extracted specific data on demand to be incorporated in this 
study. This ensured that patient confidentiality and anonymity were main-
tained and clinical data sets were interpreted correctly. 

Establishing data set genealogies
We used a commercially available fully integrated data access, aggregation, 
contextualization, analysis, and reporting software system to align data 
from multiple sources to a single organizing principle (e.g., a process batch). 
This created a single data structure that could be used for meaningful 
comparisons independent of various data elements origins (geographic 
locations, data sources, and business functions). 
 To simplify data integration, we designed an intermediate data layer that 
was integrated according to its format rather than its content (e.g., discrete, 
replicate, continuous, stability, batch, and genealogy data). This ensured 
that no context was lost, regardless of the original data source, even when 
taken from paper records and spreadsheets (Figure 1). The number and 
type of metadata could come from different sources. A typical analytical 
result is linked to a specific analytical method, method component, 
equipment, etc., as appropriate. Materials will be linked to a supplier, grade, 
etc., as appropriate. To allow easy data aggregation, we defined a structure 
in which all data could be loaded and retrieved by querying its metadata. 
Tables always refer to a manufacturing or clinical unitary item (e.g., batch 
number or patient identification code). 
 Five tables in the database were constructed to ameliorate simultaneous 

Figure 1: System architecture and data organization in data integration layer
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searches by different users:
1. Discrete: Unique single-instance measurements (e.g., patient age, 

batch manufacturing date) 
2. Replicate: Single unit in a series of repeated measurements (e.g., 

injection dates for one patient)
3. Continuous: Series of measurements that relate to a single batch of 

product (e.g., time-based pH profile during the batch manufacturing 
process) 

4. Stability: Single unit in a series of measurements over time and 
conditions (e.g., change in aggregate levels of the active ingredient in a 
biopharmaceutical over the duration of a stability study)

5. Genealogy: Linked inputs and outputs of processed materials over a 
sequence of process steps (e.g., upstream drug substance lots that 
contributed to one batch of downstream drug product)

This approach preserved the links between data values and metadata 
across the organizing principle, and enabled users to trace lots used in the 
clinic to individual vials from the working cell bank. 
 Meaningful conclusions and correlations cannot be drawn from data with-
out being able to account for the genealogy of the process stream. Using au-
tomated genealogy-mapping tools provided in the same commercially avail-
able software system as used above, we linked up- and downstream critical 
process parameters to product-critical quality attributes in processes where 
drug product splitting and pooling occurred.
 Data sets were in both electronic and hard copy form. 
Hard copy historical CMC data (usually from a CMO) was 
transcribed, double-checked to verify correctness, and en-
tered into an electronic database using the browser-based 
data entry capability also provided in the same commer-
cially available software system used above.
 The single data repository was disconnected from the 
original data source and data-processing applications. 
Metadata was perpetuated in a data integration layer so it 
could be extracted, saved, and shared through self-service 
access without affecting the original source data. This cre-
ated a plug-and-play system that generated queries and 
process algorithms automatically.
 With the tools and methodology in place, CMC/techni-
cal data analyses were conducted independently from the 
clinical trial process. These were separate from and did not 
interfere with clinical data processing, since all analyses 
were conducted in the absence of any clinical data.
 To verify data linkages, clinical data sets also included a 
dictionary to define each parameter for which a measure 
was reported. We used process modeling and data organ-
ization tools to determine correlations between process 
conditions, product characteristics, and clinical results. 
Clinical data sets included: 1) information related to the 
product used (finished goods), such as kit numbers and 
use dates, and 2) information related to individual pa-
tients, such as identification codes and recruitment dates. 
 In many companies, CMC/technical and clinical teams 
operate independently of each other due to their different 
experiences, expectations, locations, business objectives, 

and key performance indicators. Our methodology was designed to link 
the two data families and help the teams work together. It also enabled an 
integrated data analysis that included the process genealogy, tracing back 
to early drug production process steps from individual kits of clinical trial 
material. A single active drug product batch, for instance, could generate up 
to 1,000 product kits for clinical use, and each patient could be exposed to 
up to four different product kits over multiple visits. 
 Product process performance is typically evaluated by measuring out-
puts such as process yield, product purity, and cycle times. In this study, 
clinical outcomes were the major outputs. Nevertheless, the same mathe-
matical, statistical concepts, or information technology systems and tools 
were used to analyze process outputs in this different paradigm.
 Figure 2 illustrates the complexity of the material genealogy over the 
process manufacturing steps from raw materials to patient responses, 
as well as the data model organization used for this study. It appears for 
an end-user as an activity-based organized data map, ensuring an easy-
to-use interface. The process data model configuration enabled analysis 
across process set-up, production process operations, in-process controls, 
materials genealogy, product stability, product release, clinical observation, 
adverse events (AEs), and product/patient linkage (as genealogy).
 To enable correlation of multistep manufacturing processes and clinical 
data, complete traceability across process steps is required. Our platform 
was configured to analyze each material transaction individually as a single 

Figure 2: Superimposition of the complete process with data model
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parent-child couple, allowing fast data retrieval and analysis by branch-
and-leaf-type filtering as a specific parent or child category. In addition, 
it removed recycling processes that often create endless query loops and 
generate lengthy retrieval times.
 Each type of transaction has a unique genealogy table. Filtering batch 
metadata (steps, product name, or number) links successive steps.

RESULTS 
Critical quality attributes 
To define the product quality profile, we estimated the evolution of quality 
attributes between the dates of drug manufacture and drug administration, 
then correlated the model of the quality profile with clinical outcomes. This 
approach provided a more realistic assessment of the effect of individual 
quality attributes on treatment efficacy. 
 A stability model for each quality attribute was used to predict its evo-
lution until the time of administration to the patient. Constant and correct 
storage conditions (5°C) were used to determine the predicted value.
 Stability studies performed on drug substance and drug product (at 
–70°C, +5°C, +25°C, and +40°C) identified three types of relationships 
between measured values evaluated during product testing and at the 
estimated time of administration to patients (Table B):

Table A: Genealogy table

Linked steps Genealogy 
origin

Genealogy links Cardinality

Cell expansion/N-3
N-3/N-2
N-2/N-1
N-1/N
N/API

Excel (in lab) and 
paper batch record 
(in mfg) 

Batch number to 
batch number 

From 1:1 to 1:10 
(between steps  
N-1 and N)

API/bulk drug 
product 

Electronic records 
(internal mfg)

Batch number to 
batch number 

1:1.6 (average)

Bulk drug  
product/kit

Excel records Batch number to kit 
number 

1:1,000

Kit/patient Excel records Kit number 
to patient 
identification 
number

4:1

Understanding the CMC data connection  
to clinical data 
Clinical populations were divided into groups according to treatment 
outcomes:
1. Responders to treatment: 

 Yes: A positive response to treatment 
 No: A negative response to treatment

2. Patients who stayed for the duration of the clinical study: 
 Yes: The patient completed the clinical study 
 No: The treatment was stopped. (Note that a patient not completing 

a treatment is automatically considered a negatively responder.)
3. Adverse event: The number of AEs in different classes: 

 None 
 Limited number (1–5)
 Significant number (> 6) 

Note: Certain specific AEs (e.g., rashes) and clinical measures  
(e.g., C-reactive protein) were checked but not reported in this study.

To correlate physical parameters in the patient population, we determined 
quality attributes that influenced clinical observations and later specification 
limits by performing the following process data analyses:
 Parameter characterization and distribution description: Provides basic 

descriptive statistics and shape analyses
 Unifactorial correlation verification: Checks whether an input parameter 

influenced an output parameter (e.g., analysis of variance), correlation 
matrix, nonparametric tests, dimension reduction: principle component 
analysis with selection of the most influential parameters 

 Multiple regression: Uses a list of selected input parameters in a 
stepwise multifactorial regression. Stepwise procedures alternatively 
include and exclude parameters to retain only influencing parameters 
and quantify parameter influences.

Table B: Quality attributes evolution model, based on 
stability outcomes

Stability outcome Relationship equation

No evolution Yinj = Ymfg

Linear evolution Yinj = A + B.Ymfg × time

Nonlinear evolution Yinj = B.f(time, Ymfg)

Where: 
Ymfg is the quality attribute level at testing
Yinj is the estimated quality attribute level at injection
Time is the elapsed interval between testing and injection

Prediction: The real-time evolution of specific impurities during product 
storage (Figure 3) were used to develop the process model, which was 
then used to predict a quality profile of the clinical material on the date 
of drug intake (Figure 4). This was achieved by combining the date of 
drug manufacture, the impurity profile at release time, and the evolution 
of the impurity profile measured during stability studies. This model was 
used to predict the quality profile on the date of patient administration 
for individual kits after a variable period of storage from manufacturing to 
patient administration.
 Quality attributes were assessed as a function of three criteria:
 Individual patient treatment response
 Patients remaining for the study duration 
 Adverse events: Scoring the number of AEs in different classes

To investigate relationships between clinical responses (e.g., AEs, 
responders, and nonresponders), we looked at the total patient population, 
the population that completed clinical trials, dosage, and quality parameter 
values. Figure 5 compares the variability of a specific parameter value, 
under different conditions. The figure can be divided into two groups: 
“Patient global response to treatment” (A and C) and “Patient completing 
clinical study” (B and D). Variation analyses were performed for all 
treatment types (A and B), with doses of active pharmaceutical ingredient 
(API)ranging from 100 to 1,800 milligrams (mg), and for treatment type 
3, which corresponds to a 1,200-mg dose (C and D). Observation of these 
subgroups removes an important source of variability, but also decreases 
the statistical significance of the study.
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Figure 4: Prediction of the same impurity levels at date 
of administration
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 To analyze this correlation, we used multiple tools, such as:
 Box and whisker plot: Evaluates the different distributions of quality 

attributes between groups
 Regressions: Evaluate quality attributes that influence clinical 

measurements. The variability range of each quality attribute showed 
no correlation between responder and nonresponder patients, or 
between patients who completed the treatment and those who left  
the study.

Using a formal statistical approach, we concluded that there was a statistical 
difference between those patients who left and those patients who complet-
ed the type 3 treatment (1,200 mg API, P value = 0.04). However, the size of 
the subgroup (patients receiving treatment type 3 and leaving the trial) was 
limited, and the observed statistical difference was not significant.

Quality profile effect on AEs
Clinical results can be expressed in different ways:
 Quantitative: Number of AEs observed in an individual patient 

attributed to treatment 
 Qualitative: “Yes” if AEs observed, “No” if no AEs observed 
 Semiquantitative: Number of AEs observed during treatment  

(0, 1–5, or > 6)

The semiquantitative method distinguishes group effects better than nu-
merical correlation and is recommended to highlight adverse events and 
identify group homogeneity.
 To analyze this correlation, we used statistical tools.
 Figure 7A: Box-and-whisker plot and cluster analysis on the quality 

attributes to evaluate the distribution differences between qualitative 
and semiquantitative groups (patient responses, patient leavers, AEs) 
(Figures 5 and 6)

 Figure 7B: Principal component analysis multifactorial regression on 
the quality attributes and combination of quality attributes to measure 
their impact on quantitative factors (frequency of adverse event, 
biological measures)

Neither analysis showed any correlation between quality attributes and 
clinical observations. 
 We were unable to isolate quality attributes as influencing clinical obser-
vations for either efficacy indicators or adverse events.

CONCLUSIONS
The objective of this pilot study was to develop an approach to understand-
ing relationships between product quality attributes and clinical patient 
outcomes. A carefully designed data architecture was combined with a 
commercial software system for fully integrated data access, aggregation, 
contextualization, analysis, and reporting to assess possible links between 
clinical outcomes and manufacturing process data. 
 By following this approach we were able to evaluate relationships be-
tween quality and clinical metrics (single or combined) more easily, as com-
pared to the manual methods used in the past. 
 No significant correlation was found between product quality attributes 
and clinical outcome of the drug product in terms of treatment efficacy, 
treatment tolerance, or AEs. The value of this result represents (to the best 
of our knowledge) the first published instance of such a demonstration. 
 This study used software systems instead of manual data aggregation and 
contextualization methods, dramatically reducing the potential for human 
error. It provided systematic analysis for 10 to 1,000 batches. The knowledge 
gained can easily be leveraged and connected with other sets of data. 
 Making the link between manufacturing process and product quality data 
and patient outcomes was the most important step forward, since lower pa-
tient risk translates to lower costs and faster times to market for new drugs. 
 We believe that the processes and tools described in this study offer a 
useful path to link the quality of manufactured product to improved treat-
ment safety and efficacy that will improve the data-driven determination of 
critical quality attributes and their relationship to meaningful clinical quali-
fication of specifications. 
 The process of progressing a pharmaceutical product from clinical 
trials to successful launch and delivering consistent product to the patient 
requires analysis and understanding of vast amounts of data. Analyzing 
of such large data sets (commonly referred to as “big data”) is often a 
complex and arduous way to demonstrate that a pharmaceutical product 
meets expected standards of quality, safety, and efficacy.
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Figure 5: Critical parameter variability comparison
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 Establishing data-driven quality specifications (product and process 
limits) based on scientific understanding of the pharmaceutical, its stability, 
characteristics, and manufacturing capability is reasonably straightforward. 
Linking product quality metrics to safety and efficacy data, however, is 
still not typically a facile endeavor. Advances in “big data” methods, as 
shown in this study, offer the potential of achieving science-based clinical 
qualification of specifications. ‹›
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Figure 7: Quality attributes and clinical outcomes correlation

Figure 6: Critical parameter variability between  
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